
This creates a reverse electric field that diminishes the 
net electric field across the plates (see sketch on next 
page).

Dielectrics

30.)

Consider the charged, parallel-plate capacitor 
shown to the right (complete with its E-fld).
Placing an insulating material (called a dielectric)
between the plates does a number of things.   

2.) With the net electric field diminishing, the net 
electrical potential across the plates goes DOWN.  

3.) Conceptually, placing a dielectric between the plates effectively allows the 
plates to hold more charge per unit volt.  This is why the capacitance increases 
when a dielectric is placed internal to the cap.  

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

As C=q/V, a diminishing of V means the capacitance goes UP.  

1.) The dielectric experiences a van der Waal effect 
due to its presence in the electric field between the 
plates.  



31.)

Net effect: For the charged, parallel-plate capacitor 
shown to the right.

where    , sometimes characterized as     , is the 
proportionality constant called the dielectric constant.

reverse electric-field due to van der 
Waal effect in insulating dielectric

net electric field, hence net voltage 
across the plates, decreases with 
dielectric

1.) The capacitance of a capacitor with a dielectric 
between its plates will equal:

Cwith  dielectric = κCwithout  dielectric ,

κ εd

Note 1:  This means there are three ways to increase 
a capacitor’s value:

1.) increase the plate area.
2.) bring the plates closer together.
3.) place an insulating dielectric between the plates.



• So far, all the capacitors we’ve considered have had air in between the plates. 
What if another material is in there?

• A dielectric is a material (e.g. rubber, plastic, waxed paper) that increases the 
capacitance when placed between the plates. 
– Imagine a charged capacitor of capacitance C0. Because it’s charged, it has a 

voltage between the plates of V0 and charge on a plate Q0.
– If the dielectric is inserted into the capacitor, the charge doesn’t change 

(nothing allowed the plates to equalize), but the voltage is observed to decrease 
by a factor 𝛋, so Vnew = V0/ 𝛋.

– Therefore, we can say: C#$% = '(
)(/+

= κC- where 𝛋 is called the dielectric 
constant, and is unique to a substance (table on p. 575)

• 𝛋 for air is 1.00059 (or, basically, 1)

– So, for any parallel plate capacitor, we can say: C = κϵ-
/
0

Dielectrics Summary



Dielectrics
• What’s the point of a dielectric?

– Increasing the capacitance (duh). But how…?
• With a dielectric inserted…

– The plates can be pushed closer together, increasing capacitance. Why?
--A good dielectric has a greater “breakdown voltage” than air. Remember the 
Christmas lights? Air will ionize and allow electricity to conduct if the electric field 
is strong enough. With a dielectric in the way, the stronger electric field due to the 
plates being closer together can’t break down the dielectric as easily.
--Also recall that capacitors don’t stay charged forever! There will be a tiiiiiiiny
trickle of charge between the plates, so over time the plates will equalize. A 
dielectric extends this time even more. 

§ The capacitor can be rolled up into 
a tiny size, with the dielectric 
keeping the plates from touching.



Practice question (16.49)
• The voltage across an air filled 

capacitor is 85 volts. With a 
dielectric between the plates, the 
voltage is 25 volts.

a.) What is the dielectric constant? Can 
you tell what the dielectric is?

•
b.) If the dielectric doesn’t completely 
fill the space, what can you conclude 
about the voltage across the plates?

κ =
V-
V#$%

= 3.4 → plexiglas

It’s somewhere between 25 V and 85 V



Qtot = Q1 + Q2
Ceq ∆V = C1 ∆V + C2 ∆V

Ceq,parallel = C1 + C2

Capacitors in combination
• Just like resistors, capacitors can be put in combinations (series and parallel) to 

change the equivalent capacitance of a circuit.
• The equations for series and parallel for capacitors is reversed from those for 

resistors! Here’s why:

These parallel capacitors 
are both connected to the 
battery. This means the 
voltage across each 
capacitor is equal to that of 
the battery, or Vcap = Vbatt.

∆V? = ∆V@ = ∆VABCC

C1

C2

𝛥V

Each capacitor can store some 
amount of charge Q, and we 
can say Qtotal = Q1 + Q2. 
Combining that with the 
voltage expression, we get:

Key point about capacitors in parallel: the voltage across each capacitor is the same!



Capacitors in combination
• How about in series?
Recall that the plates of a capacitor have equal and opposite charges. As the capacitors 
begin charging, one plate gains charge and other loses. For this particular circuit, the left-
hand plates of each capacitor acquire charge +Q, and the right-hand plates acquire charge -
Q. This also means that the Q of the equivalent circuit is the same as the Q on either 
capacitor! Why are these things true?

+Q+Q
-Q -Q

+       -

Q on each capacitor is the same, but the 
voltage is not - by Kirchhoff’s loop rule, 
we have:     ∆𝑉 = ∆𝑉? + ∆𝑉@

Therefore, we can say:
𝑄
𝐶IJ

=
𝑄
𝐶?
+
𝑄
𝐶@

Simplifying:

C1 C2

𝛥V
𝟏

𝑪𝐞𝐪,𝒔𝒆𝒓𝒊𝒆𝒔
=
𝟏
𝑪𝟏

+
𝟏
𝑪𝟐

Key point about capacitors in series: 
all capacitors have the same net Q



Mixed combinations
• Analyzing a complex circuit with capacitors in both series and parallel is just 

like analyzing a complex circuit of resistors!
– Use the series and parallel rules to simplify and redraw the circuit until you 

have a single equivalent capacitance
– Remember rules about whether voltage is equal across the capacitors 

(parallel) or charge is equal on all capacitors (series)
– Use Kirchhoff’s rules if necessary around a loop.

C$U,VBWBXX$X = C? + C@ +⋯
1

C$U,[$W\$[
=
1
𝐶?
+
1
𝐶@
+⋯



Example
• What is the equivalent capacitance? 5 nF 5 nF

5 nF

5 nF



Solution

5 nF 5 nF

5 nF

5 nF

Start with the series branch:
1
C$U

=
1
5
+
1
5
→ C$U =

5
2
nF

Now that’s in parallel with the other branch:

C$U =
5
2
+ 5 = 7.5 nF

Finally, that is in series with the lone capacitor on the right:

1
C$U

=
1
7.5

+
1
5
→ C$U = 3 nF



RC circuits
• This type of circuit, with a DC power source, capacitor, and resistor, is known as 

an RC circuit. 
• The question is: when you connect this circuit, how fast will it act? How about 

during discharging? To answer that question, we look at something called the RC 
time constant.

+ +
-

I(t)

Q(t)

q As we close the switch, current will flow and the 
capacitor will begin to charge. We can use Kirchhoff’s 
loop rule around the circuit here at any given time t:

V- − I t R −
Q t
C

= 0 Then divide by R and 
rearrange:

I t +
1
RC

Q t =
V-
R

Then remembering that I(t) = 
d(Q(t))/dt:

d(Q t )
dt

+
1
RC

Q t =
V-
R



RC equations - charging capacitor
d(Q t )
dt

+
1
RC

Q t =
V-
R

The solution to this equation is exponential:

Q t = QkBl(1 − emC/no)

This tells us that at t = 0, e0 = 1 so Q = 0 -- just what we’d expect. No charge 
has built up. At t = infinity, Q = Qmax -- also what we’d expect.

And:

I t = 0U
0C
= − ?

no
QkBl(−emC/no) = ?

n
('pqr

o
)(emC/no)

I t =
V-
R
emC/no = I-emC/no

Same checks: at t = 0, I = I0 or maximum current. At t = infinity, I = 
0 as we’d expect, because the capacitor is charged.



Time constant
• We can see from these equations that it takes an infinite time to fully charge the 

capacitor. However, in practicality, the capacitor does charge in a finite time. 
• The RC term in the exponent of both equations is called the time constant of the 

circuit, given the symbol 𝜏 = 𝑅𝐶.

• When t = 𝜏, we get QkBl 1 − em
uv
uv = 𝑄wxy 1 − .3679 = .63𝑄wxy

This means after a period of time equal to one 
time constant, the charge on the capacitor is 
63% of the maximum charge. This is true no 
matter what the time constant is!

If you have a graph of Q vs t, you can look at 
when Q is 63% of maximum, and find the time 
constant!



Discharging capacitor

• For a discharging capacitor, the reverse is true. In the amount of time equal 
to one time constant, the capacitor will lose 63% of its initial charge. This 
makes the equation Q t = QkBl(emC/no)

• The current, in a discharging capacitor, however, has the same behavior: 
maximum current at t = 0, decreasing as time goes on. That equation stays 
the same. 

• What would the graph look like?



Discharging capacitors
Let’s try it - what’s the time constant for this capacitor? (remember Q and V are 
proportional)



These are discharge graphs for three 
different capacitances (same resistor in 
each case). Which cap must have been 
largest?



The resistor and capacitor values for 
one of the graphs is given.  With which 
graph do they go? 

Cseries = 29.2 µF
R = 40.5 kΩ



RC circuit refresher
• We looked at a circuit containing a resistor and capacitor. What 

happens when they’re connected? How can we model the behavior 
of the circuit in terms of Q(t) and I(t) for both charging and 
discharging?

• We ended up with two relationships for Q(t) depending on 
charging vs. discharging (which is which, and why?): 

• Q(t) = Qmax(1-e-t/RC) or Q(t) = Qmaxe-t/RC

• Current is always I(t) = I0e-t/RC - why?
• What is special when t = RC? What is it called?  What does it tell 

us?



Two quick checks



continued

Solutions are in Mr Fletcher’s book online



Problem 16.42

Solution is on MyPoly

What is the equivalent capacitance for the circuit to 
the right?



Problem 16.42
What is the equivalent capacitance of the circuit?

(note that the two caps in 
each upper side-shoot are 
in series)

(note that the two caps in 
the lower section are in 
parallel)



Problem 16.29
• Given the capacitor to the right:

– What’s E between the plates?

– What’s C?

– What’s the charge on each plate?

A = 7.6 cm2

d = .18 cm

V = 120 volts



Problem 16.31
• Given the capacitor to the 

right:

c.) What’s E?

a.) What’s C?

b.) What’s q on each plate?

d.) What’s q/A?

e.) How will they all change if the plates are moved farther apart without 
disconnecting the voltage source?

C =∈-
A
d
= 8.85x10m?@

0.2 m@

0.003 m
= 5.9x10m?- F or 590 pF

Q = C∆V = 5.9x10m?-F 6 V = 3.54x10m� C

E � d = −∆V
E 0.003 m cos0 = − 0 − 6V

E = 2000 V/m

𝑄
𝐴
=
3.54𝑥10m� 𝐶
0.2 𝑚@ = 1.77𝑥10m� 𝐶/𝑚@

If d increases, C decreases, so less q on each plate, weaker electric 
field between them, and less charge density.



Kirchhoff refresher

ε2 = 60v

ε3 = 80v

R1

R1

R2

R3

R3

R3
A

For the circuit to the right:

a) How many nodes? How many 
branches?

b) How many individual currents do 
you have to define in this circuit? 
How many equations do you need 
to solve?

c) Use Kirchhoff’s Laws to write the 
equations you would need to solve 
for the current through the 
ammeter. YOU DO NOT NEED TO 
SOLVE THEM.

ε1 = 70v

R3 = 4 kΩR2 = 3 kΩR1 = 2 kΩ



Kirchhoff refresher
For the circuit to the right:

a) How many nodes? How many branches?  
4 nodes, 6 branches

b) How many individual currents do you have to 
define in this circuit? How many equations do 
you need to solve?                                                    
6 currents (or at least 3, with others in terms of 
those three). You need 6 equations for 6 
unknowns.

c) Use Kirchhoff’s Laws to write the equations 
you would need to solve for the current 
through the ammeter. (Many options, I’ll do 3 
nodes and 3 loops):

ε2 = 60v

ε3 = 80v

R1

R1

R2

R3

R3

R3
A

ε1 = 70v

R3 = 4 kΩR2 = 3 kΩR1 = 2 kΩ

I4

I2

I3

I1

I5

I6

I5 = I1 + I3 80 + R3I2 + R2I3 -R1I1 = 0
I6 + I3 = I2 60 - R2I3 + R1I6 -R3I5 = 0
I1 + I2 + I4 = 0 70 + R3I2 + R1I6 -R3I4 = 0


